## 6 Line Segments and Rays

**Definition** (line segment  $\overline{AB}$ ) If A and B are distinct points in a metric geometry  $\{S, \mathcal{L}, d\}$  then the line segment from A to B is the set  $\overline{AB} = \{M \in S \mid A - M - B \text{ or } M = A \text{ or } M = B\}$ .

**1.** Let  $A(-1/2, \sqrt{3}/2)$  and  $B(\sqrt{19}/10, 1/10)$  denote given points of line  $_0L_1$ . Give a graphical sketch for line segment  $\overline{AB}$ .

**2.** Let  $A(x_1, y_1)$ ,  $B(x_2, y_2)$  and  $C(x_3, y_3)$  denote three points which belong to the type II line  ${}_{c}L_{r}$ 

in the Poincaré Plane. If  $x_1 < x_3 < x_2$  show that then  $C \in \overline{AB}.$ 

**3.** Let  $A(x_1, y_1)$  and  $B(x_2, y_2)$  lie on the type II line  $_cL_r$  in the Poincaré Plane. If  $x_1 < x_2$  show that  $\overline{AB} = \{C = (x, y) \in _cL_r \mid x_1 \le x \le x_2\}.$ 

**Definition** Let  $\mathcal{A}$  be a subset of a metric geometry. A point  $B \in \mathcal{A}$  is a passing point of  $\mathcal{A}$  if there exists points  $X, Y \in \mathcal{A}$  with X - B - Y. Otherwise B is an extreme point of  $\mathcal{A}$ .

**4.** Let  $A(x_1, y_1)$  and  $B(x_2, y_2)$  denote two points in metric geometry, and let  $C \in \overline{AB}$ . If  $C \neq A$  and  $C \neq B$  explain is point C passing point or extreme point of  $\overline{AB}$ .

**<u>Theorem</u>** If A and B are two points in a metric geometry then the only extreme points of the segment  $\overline{AB}$  are A and B themselves. In particular, if  $\overline{AB} = \overline{CD}$  then  $\{A, B\} = \{C, D\}$ .

**5.** Prove the above theorem. [use proof by contradiction to show that A is not a passing point of  $\overline{AB}$ ...]

**<u>Definition</u>** (end points, length of the segment  $\overline{AB}$ ) The end points (or vertices) of the segment  $\overline{AB}$  are A and B. The length of the segment  $\overline{AB}$  is  $\overline{AB} = d(A, B)$ .

**Definition** (ray  $pp[A,B) = \overrightarrow{AB}$ ) If A and B are distinct points in a metric geometry  $\{S, \mathcal{L}, d\}$  then the ray from A toward B is the set

$$pp[A, B) = \overrightarrow{AB} = \overrightarrow{AB} \cup \{C \in \mathcal{S} \mid A - B - C\}.$$

**<u>Definition</u>** (vertex of the ray) The vertex (or initial point) of the ray  $pp[A, B) = \overrightarrow{AB}$  is the point A.

**<u>Theorem</u>** If A and B are distinct points in a metric geometry then there is a ruler  $f : \overleftrightarrow{AB} \to \mathbb{R}$  such that  $pp[A, B) = \overrightarrow{AB} = \{X \in \overleftrightarrow{AB} \mid f(X) \ge 0\}$ 

**6.** Prove the above theorem.

 $[\{X \in \overleftarrow{AB} \mid f(X) \ge 0\} \subseteq \overrightarrow{AB}; \ \overrightarrow{AB} \subseteq \{X \in \overleftarrow{AB} \mid f(X) \ge 0\}\]$ 

**<u>Definition</u>**  $(\overline{AB} \cong \overline{CD})$  Two line segments  $\overline{AB}$  and  $\overline{CD}$  in a metric geometry are congruent (written  $\overline{AB} \cong \overline{CD}$ ) if their lengths are equal; that is  $\overline{AB} \cong \overline{CD}$  if AB = CD.

<u>**Theorem**</u> (Segment Construction). If  $\overrightarrow{AB}$  is a ray and  $\overrightarrow{PQ}$  is a line segment in a metric geometry, then there is a unique point  $C \in \overrightarrow{AB}$  with  $\overrightarrow{PQ} \cong \overrightarrow{AC}$ .

**7.** Prove the above theorem. [let f be coordinate system for  $\overrightarrow{AB}$  with A as origin and B positive...]

**8.** In the Poincaré Plane let A(0,2), B(0,1), P(0,4), Q(7,3). Find  $C \in \overrightarrow{AB}$  so that  $\overrightarrow{AC} \cong \overrightarrow{PQ}$ .

**9.** Let A and B be distinct points in a metric geometry. Then  $M \in \overrightarrow{AB}$  is a midpoint of the line segment  $\overrightarrow{AB}$  if and only if AM = MB. (Remember that here AM means d(A, M).) (a) If M is a midpoint of  $\overrightarrow{AB}$ , prove that A - M - B. (b) Show that  $\overrightarrow{AB}$  has a midpoint M, and that M is unique. (c) Let A(0,9) and B(0,1). Find the midpoint of  $\overrightarrow{AB}$  where A and B are points of (i) the Euclidean plane; (ii) the Hyperbolic plane.

**10.** determine are the statements true or false: (a)  $\overline{AB} = \overline{CD}$  only if A = C or A = D. (b) If AB = CD then A = C or A = D. (c) If  $\overline{AB} \cong \overline{CD}$ , then  $\{A, B\} = \{C, D\}$ . (d) If  $\overline{AB} \cong \overline{CD}$ , then  $\overline{AB} = \overline{CD}$ . (e) A point on  $\overrightarrow{AB}$  is uniquely determined by its distances from A and B. **11.** In a metric geometry prove that (i) if  $\overrightarrow{C} \in \overrightarrow{AB}$  and  $\overrightarrow{C} \neq A$ , then  $\overrightarrow{AC} = \overrightarrow{AB}$ ; (ii) if  $\overrightarrow{AB} = \overrightarrow{CD}$  then A = C.

**12.** In a metric geometry  $(\mathcal{S}, \mathcal{L}, d)$ , prove that if A - B - C, P - Q - R,  $\overline{AB} \cong \overline{PQ}$ ,  $\overline{AC} \cong \overline{PR}$ , then  $\overline{BC} \cong \overline{QR}$ .

## 7 Angles and Triangles

It is important to note that an angle is a set, not a number like 45°. We will view numbers as properties of angles when we define angle measure in section: "The Measure of an Angle".



**Lemma** In a metric geometry, B is the only extreme point of  $\angle ABC$ .

**1.** Prove the above lemma.

 $[Z \in \measuredangle ABC, Z \neq B \Rightarrow Z \text{ is a passing point of } \measuredangle ABC...]$ 

**<u>Theorem</u>**  $(\measuredangle ABC = \measuredangle DEF \Rightarrow B = E)$  In a metric geometry, if  $\measuredangle ABC = \measuredangle DEF$  then B = E.

**2.** Prove the above theorem.

**<u>Definition</u>** (vertex of the angle  $\measuredangle ABC$ ) The vertex of the angle  $\measuredangle ABC$  in a metric geometry is the point *B*.

If  $\{A, B, C\}$  are noncollinear points in a metric geometry then

**<u>Definition</u>** (triangle  $\triangle ABC$ )

the triangle  $\triangle ABC$  is the set  $\triangle ABC = \overline{AB} \cup \overline{BC} \cup \overline{CA}.$ 



**Lemma** In a metric geometry, if A, B, and C are not collinear then A is an extreme point of  $\triangle ABC$ .

**3.** Prove the above lemma. [proof is by contradiction, suppose that D - A - E with  $D, E \in \triangle ABC$ ...]

**<u>Theorem</u>** In a metric geometry, if  $\triangle ABC = \triangle DEF$  then  $\{A, B, C\} = \{D, E, F\}$ .

**4.** Prove the above theorem. [If  $X \in \triangle ABC$  and  $X \notin \{A, B, C\}$  then X is in one the segments...]

**<u>Definition</u>** (vertices, sides) In a metric geometry the vertices of  $\triangle ABC$  are the points A, B, C. The sides (or edges) of  $\triangle ABC$  are  $\overline{AB}, \overline{BC}$  and  $\overline{CA}$ .

**5.** Prove that  $\angle ABC = \angle CBA$  in a metric geometry.

In next two problems do not use last Lemma and last Theorem above.

**6.** Prove that if  $\triangle ABC = \triangle DEF$  in a metric geometry then  $\overrightarrow{AB}$  contains exactly two of the points D, E and F.

**7.** In a metric geometry, prove that if A, B and C are not collinear then  $\overline{AB} = \overrightarrow{AB} \cap \triangle ABC$ .

 $[\{B\} = \dots = \{E\}]$